

# Glucose Dehydrogenase (FADGDH-AA)

# from recombinant Aspergillus sojae

D-Glucose: acceptor 1-oxidoreductase, EC 1.1.5.9

### **SPECIFICATION**

Appearance Yellow lyophilizate
Activity ≥500 U/mg lyophilizate

Contaminant NAD Glucose Dehydrogenase  $<1.0\times10^{-2}\%$ 

Hexokinase  $<1.0\times10^{-20}\%$ α-Glucosidase  $<1.0\times10^{-20}\%$ β-Glucosidase  $<1.0\times10^{-20}\%$ 

Storage below  $-20^{\circ}$ C

# **PROPERTIES**

Molecular weight ca. 90 kDa (SDS-PAGE)

Structure monomer, one mole of FAD per mole of enzyme glycoprotein

Michaelis constant 9.5 $\times$ 10<sup>-2</sup> M (D-Glucose) pH Optimum 7.0–7.5 (Fig. 1) pH Stability 2.5–7.5 (Fig. 2)

Optimum temperature 40–50°C (Fig. 3) Thermal stability below 50°C (Fig. 4)

Inhibitors Ag<sup>+</sup>

Specificity D-glucose (100), Maltose (<1),

D-xylose (<1), D-galactose (<1)

# **FADGDH-AA (CD: 60100)**

#### ASSAY PROCEDURE

## **Principle**

The disappearance of the blue color of DCIP by the reduction is measured spectrophotometrically at 600 nm.

#### **Definition of unit**

One unit (U) causes the reduction of one micromole of DCIP per minute under the conditions described below.

## Reagents

- A. D-Glucose solution, 2 M: 72 g of D-glucose/200 ml of distilled water.
- B. Potassium phosphate buffer, 0.1 M; pH 7.0: mix 0.1 M KH<sub>2</sub>PO<sub>4</sub> solution and 0.1 M K<sub>2</sub>HPO<sub>4</sub> solution to make a pH 7.0 solution.
- C. 2,6-Dichloroindophenol (DCIP) solution, 1.8 mm: 58.7 mg of DCIP/100 ml of distilled water.
- D. 5-Methylphenazinium methyl sulfate (PMS) solution, 30 mm: 91.9 mg of PMS/10 ml of distilled water.
- E. Enzyme dilution buffer: 10 mm potassium phosphate buffer, pH 6.0, containing 0.1% bovine serum albumin (BSA).

Sample: dissolve the lyophilized enzyme to a volume activity of 0.1–0.9 U/ml with ice-cold enzyme dilution buffer (Reagent E) immediately before measurement.

#### **Procedure**

1. Pipette the following reagents into a cuvette (light path: 1 cm).

```
\begin{array}{lll} 600~\mu L & \text{ D-Glucose solution} & (\text{Reagent A}) \\ 2050~\mu L & \text{Potassium phosphate buffer pH 7.0} & (\text{Reagent B}) \\ 150~\mu L & \text{DCIP solution} & (\text{Reagent D}) \end{array}
```

- 2. Equilibrate at 37°C for about 3 min.
- 3. Add 0.1 ml of PMS solution (Reagent D) and mix.
- 4. Add 0.1 ml of sample and mix.
- 5. Record the decrease of absorbance at 600 nm against water for 1 min. (30–90 sec) in a spectrophotometer thermostated at 37°C, and calculate the  $\Delta A$  per min using the linear portion of the curve ( $\Delta A_{\rm S}$ ). The blank solution is prepared by adding Enzyme dilution buffer (Reagent E) instead of sample ( $\Delta A_{\rm O}$ ).

#### Calculation

Activity can be calculated by using the following formula:

Volume activity (U/ml) = 
$$\frac{(\Delta A_{\rm S} - \Delta A_0) \times 3 \text{ (ml)} \times df}{20.4 \times 1.0 \times 0.1 \text{ (ml)}} = (\Delta A_{\rm S} - \Delta A_0) \times 1.47 \times df$$

20.4 : Millimolar extinction coefficient of DCIP under the assay condition (cm $^2/\mu$ mol)

1.0 : Light pass length (cm)

df : Dilution factor

# **APPLICATIONS**

The enzyme is useful for the determination of D-glucose in clinical analysis and self-monitoring blood glucose meters.

# **REFERENCES**

Satake, R. et al., J Biosci Bioeng., 120, 498-503 (2015)

# **EXPERIMENTAL DATA**

Fig. 1 pH Optimum 100 Relative activity (%) 80 60 40 20 0 5 6 7 8 9 10 рН △: 0.1M MES-NaOH buffer □: 0.1M PIPES-NaOH buffer

Fig. 2 pH Stability 100 Residual activity (%) 80 60 40 20 0 8 3 5 6 7 9 10 2 4 рН Treatment: 25°C, 16 h ▲: 0.1M Gly-HCl buffer ♦: 0.1M acetate buffer △: 0.1M MES-NaOH buffer O: 0.1M phosphate buffer

Fig. 3 Optimum temperature

O: 0.1M phosphate buffer •: 0.1M Tris-HCl buffer



Buffer: 0.1M phosphate buffer, pH 7.0

Fig. 4 Thermal stability

: 0.1M Tris-HCl buffer



Treatment: 50 mM phosphate buffer, pH 6.0, 15 min