Maltose Phosphorylase (MPL-EP)

from recombinant E. coli

Maltose : orthophosphate 1- β -D-glucosyltransferase, EC 2.4.1.8

Maltose + Orthophosphate \longrightarrow D-Glucose + β -D-Glucose 1-phosphate

SPECIFICATION

Appearance	white lyophilizate	
Activity	≥10 U/mg lyophilizate	
Contaminants	α -amylase	$\leq 5.0 \times 10^{-3}\%$
	α -glucosidase	$\leq 5.0 \times 10^{-2}\%$
	NADPH oxidase	$\leq 5.0 \times 10^{-2}\%$
Stabilizer	lactose	
Storage	at -20°C	
PROPERTIES		
Molecular weight	ca. 220 kDa (gel filtration)	
Structure	2 subunits of 90 kDa (SDS-PAGE)	
Michaelis constants	1.9×10^{-3} M (maltose)	
	3.4×10^{-3} м (phosphate)	
	8.3×10^{-3} M (arsenate)	
pH Optimum	6.5–7.5	(Fig. 1)
pH Stability	5.5-8.0	(Fig. 2)
Optimum temperature	45–50°C	(Fig. 3)
Thermal stability	below 55°C	(Fig. 4)
Stability (liquid form)	stable at 37°C for at least one week	
		(Fig. 5)
Stability (powder form)	stable at 30°C for at least four weeks	
		(Fig. 6)
Inhibitors	$Hg^{2+}, Ag^+, Zn^{2+}, Cu^{2+}$	

ASSAY PROCEDURE

Principle

Maltose + Phosphate \longrightarrow D-Glucose + β -D-Glucose-1-phosphate

The appearance of D-glucose is measured spectrophotometrically at 505 nm.

Definition of unit

One unit (U) is defined as the amount of enzyme which produces 1 μ mol of D-glucose per min at 30°C and pH 7.0 under the conditions described below.

Reagents

- A. HEPES–NaOH buffer, 50 mM; pH 7.0: dissolve 2.38 g of HEPES in 160 ml of distilled water, adjust to pH 7.0 with 1 N NaOH and dilute with distilled water to 200 ml.
- B. Maltose solution, 0.2 M: 3.60 g of maltose monohydrate/50 ml of HEPES-NaOH buffer (Reagent A).
- C. Phosphate solution, 0.2 M: dissolve 1.36 g of KH₂PO₄ in 40 ml of HEPES–NaOH buffer (Reagent A), adjust to pH 7.0 with 4 N NaOH and dilute with Reagent A to 50 ml.
- D. HCl solution, 5 N: 43 ml of concentrated HCl/100 ml of distilled water.
- E. pH Adjusting solution (NaOH solution, 1 N): 4.0 g of NaOH/100 ml of distilled water.
- F. Glucose assay kit: "GLUCOSE C II-TEST_{WAKO}" (Wako Pure Chemical), or a similar glucose assay kit.

Sample: dissolve the lyophilized enzyme to a volume activity of 0.15–0.55 U/ml with ice-cold HEPES–NaOH buffer (Reagent A) immediately before measurement.

Procedure

- 1. Pipette the following reagents into a test tube.
 - 0.2 ml HEPES–NaOH buffer (Reagent A)
 - 0.1 ml Maltose solution (Reagent B)
 - 0.1 ml Phosphate solution (Reagent C)
- 2. Equilibrate at 30°C for about 5 min.
- 3. Add 0.1 ml of sample and incubate for 10 min at 30°C [test].
- The blank solution is prepared by adding HEPES-NaOH buffer (Reagent A) instead of sample [blank].
- 4. Add 0.1 ml of HCl solution (Reagent D) to stop the reaction.
- 5. Add 0.5 ml of pH adjusting solution (Reagent E).
- 6. Pipette 0.3 ml of the test and blank mixture into respective test tubes.
- 7. Add 3.0 ml of glucose assay kit (Reagent D) and incubate for about 5 min at 37°C.
- 8. Read the absorbance at 505 nm in a cuvette (light path: 1 cm) [test: A_{s} , blank: A_{0}].

Calculation

Activity can be calculated by using the following formula:

Volume activity (U / ml) = $\frac{(A_{\rm S} - A_0) \times 1.1(\text{ml}) \times df}{6.24 \times 1/10 \times 0.1(\text{ml}) \times 10(\text{min})} = \Delta A \times 1.76 \times df$

Weight activity $(U/mg) = (U/ml) \times 1/C$

6.24 : Millimolar extinction coefficient of quinoneimine dye under the assay conditions (cm²/ μ mol)

1/10: A factor for correction of the reaction volume

df : Dilution factor

C : Content of maltose phosphorylase preparation in sample (mg/ml)

APPLICATIONS

The enzyme is useful for the determination of α -amylase and inorganic phosphate in clinical analysis.

 $\begin{array}{l} \text{Maltopentaose} & \xrightarrow{\alpha \text{-amylase}} & \text{Maltotriose} + \text{Maltose} \\ \\ \beta\text{-Maltose} & \xrightarrow{\text{maltose 1-epimerase}} & \alpha\text{-Maltose} \\ \\ \alpha\text{-Maltose} + \text{Phosphate} & \xrightarrow{\text{maltose phosphorylase}} & \alpha\text{-D-Glucose} + \beta\text{-D-Glucose-1-phosphate} \\ \\ \beta\text{-D-Glucose-1-phosphate} & \xrightarrow{\beta\text{-phosphoglucomutase}} & \beta\text{-D-Glucose-6-phosphate} \\ \\ \text{glucose-6-phosphate} + \text{NADP}^+ & \xrightarrow{\beta\text{-D-Glucose-6-phosphate}} & \beta\text{-D-Glucono-1,5-lactone-6-phosphate} + \text{NADPH} + \text{H}^+ \end{array}$

REFERENCES

Hiruma, M. *et al.*, *Nippon Nogeikagaku Kaishi*, **70**, 773–780 (1996). Shirokane, Y. *et al.*, *Carbohydr. Res.*, **329**, 699–702 (2000).

EXPERIMENTAL DATA

Fig. 3 Optimum temperature

Buffer: 50 mM HEPES-NaOH buffer, pH 7.0

- ■: 50 mM HEPES–NaOH buffer
- $\diamondsuit:50~\text{mM}$ Tris–HCl buffer

Fig. 4 Thermal stability

Treatment: 50 mM HEPES-NaOH buffer, pH 7.0, 10 min

Fig. 6 Stability (powder form) at 30°C

